Derivation of 2D Power-Law Velocity Distribution Using Entropy Theory
نویسندگان
چکیده
منابع مشابه
Derivation of 2D Power-Law Velocity Distribution Using Entropy Theory
The one-dimensional (1D) power law velocity distribution, commonly used for computing velocities in open channel flow, has been derived empirically. However, a multitude of problems, such as scour around bridge piers, cutoffs and diversions, pollutant dispersion, and so on, require the velocity distribution in two dimensions. This paper employs the Shannon entropy theory for deriving the power ...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Power Law and Entropy
Shannon[1] and Yavuz[2] estimated the entropy of real documents. This note drives an upper bound of entropy from the power law. Let D be a set of documents and f r(w) be the number of occurrences of a word w in the document. Given an interger k, we denote by F (k) the number of words whose frequency is k, i.e., F (k) = ♯{w ∈ D | f r(w) = k}. The entropy of the document set D is defined by E(D) ...
متن کاملEntropy Principle in Direct Derivation of Benford's Law
The uneven distribution of digits in numerical data, known as Benford's law, was discovered in 1881. Since then, this law has been shown to be correct in copious numerical data relating to economics, physics and even prime numbers. Although it attracts considerable attention, there is no a priori probabilistic criterion when a data set should or should not obey the law. Here a general criterion...
متن کاملPower-law velocity distributions in granular gases.
The kinetic theory of granular gases is studied for spatially homogeneous systems. At large velocities, the equation governing the velocity distribution becomes linear, and it admits stationary solutions with a power-law tail, f (v) approximately v(-sigma) . This behavior holds in arbitrary dimension for arbitrary collision rates including both hard spheres and Maxwell molecules. Numerical simu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2013
ISSN: 1099-4300
DOI: 10.3390/e15041221